The Statement of the Prime Number Theorem

Chebyshev’s result 7(z) > ax/logz is far stronger than 7(x) > clogz,
seen in Problem Sheet 1, yet is still a long way from the truth. It will be

shown that
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This is the Prime Number Theorem, conjectured by Euler in 1762, Gauss
in 1791 and Legendre in 1798 and proved independently by J. Hadamard and
C. de la Vallée-Poussin in 1896.

We will not in fact prove the Prime Number Theorem for m(z) but, just
as we deduced bounds on m(x) from those on ¢ (x), we will prove in the
following sections that

U(x) ~ .
This is equivalent to the Prime Number Theorem as we will now show.

Corollary 2.25
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Proof From (13) and (15) we get
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Therefore, on the assumption that the limits exist, they must satisfy
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Thus




Aside on Prime Number Theorem

Though z/logx is a good approximation to 7(z) it is not a wvery good
approximation. For a better approximation recall
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The prime number theorem in the form ¢ (z) ~ x is, by Lemma 2.16, equiv-
alent to 6(z) ~ x, which ‘suggests’ replacing 6(x) in (24) by x. This would
‘suggest’ an approximation to w(z) of
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having integrated by parts, starting by integrating 1/ (t log? t). The better
approximation to 7(x) may thus be given by the logarithmic integral
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Looking back at its derivation above,
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The integral here can be estimated by splitting at /z, as seen in the proof

of Theorem 2.20, giving
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By repeated integration by parts and an estimation of the final integral by
splitting at y/z, we have

T
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195 5 log t Z 1+J x (logm+2 )

for m > 1. Be careful, in some books lix denotes the integral
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whilst other books call this latter integral Liz.
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